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Abstract

Most industrial rotors that are supported in active magnetic bearings (AMBs) are

operated sufficiently below the first bending critical speed so that they can be con-

sidered as rigid rotors. Also, they are usually controlled using proportional, integral

and derivative control schemes which are set up as modally uncoupled parallel and

tilt rotor axes with negative feedback control signals to the AMBs. Gyroscopic effects

create mode splitting and a speed-dependent plant. Only two AMBs with four axes of

control must try to simultaneously control the rotor/AMB system and keep it stable.

Various analyses have been published over the last 20 or more years considering

this problem for different rotor/AMB configurations.

There has not been a fully dimensionless analysis of these rigid rotor AMB sys-

tems to characterize the system properties. This paper will perform this analysis

with a modal PD controller in terms of translation mode dimensionless eigenvalues

and eigenvectors plus tilt mode dimensionless eigenvalues and eigenvectors using

the rotor center of gravity coordinates without loss of generality. The number of in-

dependent system parameters will be significantly reduced using undamped transla-

tion mode natural frequencies as well as undamped, non rotating, tilt mode natural

frequencies. Dimensionless PD controller gains, the ratio of rotor polar to trans-

verse moments of inertia and a dimensionless speed ratio are used to evaluate a

fully general system stability rigid rotor analysis. A particular objective of this work

is to quantify the effects of gyroscopics on rigid rotor AMB systems. The modal PD

controller has no x-y coordinate coupling designed to control the gyroscopic forces.

These gyroscopic forces reduce the system stability margin. The paper is also in-

tended to help provide a common framework for communication between rotating

machinery designers and controls engineers. This paper does not include system

time delays, nonlinear AMB effects, system uncertainty, or flexible substructure ef-

fects.
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1 Introduction

Active magnetic bearings (AMBs) have been in use since the 1930s and are an alter-

native to fluid film bearings in the support and stabilization of rotating machinery [1].

Active magnetic bearings are a non-contact method of supporting a rotor, and offer dis-

tinct advantages due to elimination of lubrication systems, reduced parasitic losses, and

reduced wear. However, implementation of active control in AMB systems adds com-

plexity to the overall rotordynamics, including the stability of the rotor. The AMBs are

open-loop unstable, and the presence of gyroscopics further complicates the control

problem.

Many AMB rotor applications operate well below the first bending natural frequency

of the rotor, allowing for treatment of the rotor as a rigid body. This greatly simplifies

the problem as the rotor can be represented with five degrees of freedom. Gosiewski

and Falkowski [2] developed a control law based upon a rigid rotor model for an AMB

suspended gyroscope for space applications. A linearized AMB model was employed

and equations of motion were obtained for the gyroscope undergoing aircraft motions.

Matsumura et al. [3] further developed the rigid rotor second order equations of

motion, including gyroscopic effects, based upon rotations about the inertia axes. They

converted the system to state space form and used an output regulator to stabilize the

rotor/AMB system. Then they employed a feed forward controller to minimize unbal-

ance response. A similar study was presented by Mizuno and Higuchi [4]. Kim and

Han [5] presented the second order equations of motion for a rigid rotor/AMB system

and converted them to a dimensionless state space form. They considered a general

servo-controller and a centralized PID controller, evaluating disturbance rejection, ref-

erence tracking, and robustness. However, the authors did not consider the industry

most common modal tilt/translate control or the associated PD control and closed loop

system properties including dimensionless gyroscopic effects relative to dimensionless
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tilt/translate natural frequencies.

Lottin et al. [6] presented the non-linear control of a relatively long, thin rigid rotor

on two AMBs with digital implementation. No bias current was employed to reduce the

AMB power consumption. The control algorithm did not take into account the gyro-

scopic coupling. It was found not to be significant for this long thin rotor, which was

operating at a low speed in the reported experimental tests. One of the major issues

examined in this paper was the importance of the gyroscopic effects on the rotor and

some estimate of whether the controller needs to go to significant lengths to take them

into account.

Cao et al. [7] analyzed a flywheel battery with a rigid rotor on AMBs. With the flywheel

disk attached it is similar to a disk rotor. The stated purpose of the paper is “A decoupling

approach for the nonlinear model of the flywheel energy storage device supported by

activemagnetic bearings such that the instability brought on by gyroscopic effects can be

overcome.” The decoupling approach involved a nonlinear model of the control system

based upon dynamic feedback linearization. The strongly coupled rotor motion was

reduced to five normalization subsystems including four radial displacements and the

rotor speed. These linear subsystems are completely decoupled from one another and

linearized controllers were developed. The rotor was successfully levitated. However,

the authors note that the decoupling control was found to be very sensitive to variations

between the rotor model and the actual rotor. Based upon the reports of large efforts

made by various researchers, the study in the present paper to quantify the gyroscopic

effects on dimensionless properties of rigid rotors in AMBs is quite worthwhile.

Ho et al. [8] investigated the effect of an active thrust bearing on the stability of a

rigid rotor supported on AMBs. Decentralized PID controllers were implemented. Due

to tilting imposed by the thrust bearing, it was demonstrated that the thrust bearing

reduced the stability of the tilt modes.

Zhao et al. [9] developed PD control of a rigid rotor supported by AMBS for a momen-
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tum wheel application. The momentum wheel is used in spacecraft to actuate the atti-

tude control system. A Linear Quadratic Regulator (LQR) controller was used to account

for the large gyroscopic coupling imposed by a flywheel. The LQR algorithm was also im-

plemented by Pilat [10] in a simulation study. Pilat considered a non-linear inductance in

modeling the actuator forces and then linearized the system about the operating point.

A SISO controller was then implemented on each AMB axis.

Rigid rotor applications have also been considered in studies of unbalance compen-

sation. Löwis and Rudolph [11] developed an adaptive algorithm for unbalance com-

pensation. The control law included PD control for position and proportional control of

the unbalance level, resulting in rotation about the inertial center. Since the unbalance

level was unknown, an estimator of the unbalance level was used in the control law. The

stability algorithm was demonstrated using a rigid rotor model with gyroscopic effects

included.

Li et al. [12] developed an unbalance compensation routine for rigid rotors that in-

cluded a compensation term for the unbalance and an estimate of the ratio of open-loop

stiffness to current gain in the control law. The combination of the two parameters re-

sulted in rotation about the inertial center with proper pole placement. The control laws

were based on SISO controllers. Gyroscopics were not considered.

The asymptotic stability of rigid rotors supported in AMBs has also been an area of

study. Recent work in this area includes the study by Jeon et al. [13]. They investigated

the effect of sensor non-collocation on the overall stability of a rigid rotor supported in

AMBs. Using a rigid rotor model with gyroscopic effects included and a PD controller,

the system eigenvalues were derived in terms of the bearing coordinates and a factor

representing the distance between the sensors and the actuators. Based on Lyapunov

and Kelvin-Tait-Chetaev stability criteria, it was shown that sensor non-collocation can

result in instability of the rigid rotor. The stability region was improved by treating sen-

sor non-collocation as a time delay in the system model.
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Gosiewski [14] examined stability of an AMB supported rigid rotor with PD control

and non-collocated sensors. The overall state-space system model with eight degrees

of freedom was reduced to four degrees of freedom. The stability of the system was

assessed using the Hurwitz stability criterion and with root locus plots. The effect of

sensor non-collocation was mitigated by a coordinate transformation between the sen-

sor location and the actuator location. Investigation of a simulated rotor indicated that

the overall system stability was linked to location of a non-collocated sensor relative to

the node point in the tilt mode.

The current work considers a rigid rotor supported in active magnetic bearings with

gyroscopic effects included. The model has been previously presented by Larsonneur in

[15]. The PD control in this paper’s model is based on the mass center coordinates of the

shaft, with rotation about the principal axis most closely parallel to the axial direction.

From this model, an equivalent four degree of freedom system representing translate

and tilt modes including damping and gyroscopic effects is determined. The equations

of motion are then non-dimensionalized. A new analytical solution for the damped non-

dimensional eigenvalues for both translate and tilt modes is obtained due to modal

decoupling in terms of the zero-rotational speed damping ratio and natural frequencies,

the non-dimensional rotational frequency, and the ratio of polar to transverse mass

moment of inertia.

The effect of gyroscopics and damping on the tilt mode natural frequencies and sta-

bility margin is calculated. Many AMB supported rotors are relatively short, but others

are relatively long and thin. Both types are considered in this paper. One objective of

the study is to determine what conditions are relatively strongly affected by gyroscopics

and which are not.

The stability margin is expressed in terms of the logarithmic decrement, which allows

direct comparisons to typical stability assessments of rotors supported in fluid bearings

and is therefore beneficial for the turbomachinery community. A previous study by the
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authors [16] demonstrated the similarities in unbalance response between fluid film

bearing and active magnetic bearing systems. The present study is also intended to help

provide a common framework to facilitate communication between machine designers,

typically mechanical engineers, and controls designers, often electrical engineers.

2 Analysis

First, the open-loop characteristics of a rigid rotor model with gyroscopics on AMBs is

considered. Then, an active magnetic bearing with PD control and compensation for

the open-loop stiffness is considered, and the resulting free-vibration rotor model is

presented. The translate and tilt mode solutions are obtained, and the effect of the

gyroscopics on the logarithmic decrement and the undamped natural frequency of the

tilt modes is examined in detail.

2.1 Rotor Model

For the purposes of this paper, the rotor is modeled as rigid with gyroscopic effects

included. In effect, the rotor is considered to be running well below its first bending

critical speed. These assumptions apply to a wide class of machines including motors,

flywheels, and gyroscopes supported on active magnetic bearings. A free body diagram

of the rigid rotor is shown in Fig. 1.

The equation of motion for the rotor supported in magnetic bearings is then:

Müg + ΩGu̇g = fg ,AMB (1)

where Ω is the rotational speed of the shaft, fg ,AMB =
[
Fxg Fyg Mxg Myg

]T
are the

magnetic forces and moments about the rotor gravity center produced by the magnetic

bearings, and the vector u = [ xg yg θxg θyg ]
T indicates rotor translations and trans-

verse rotations about the center of gravity (c. g.). The inertia matrixM and the gyroscopic
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Figure 1: Rigid Rotor Free Body Diagram

matrix G are defined as:

M =



M 0 0 0

0 M 0 0

0 0 Jt 0

0 0 0 Jt


;G =



0 0 0 0

0 0 0 0

0 0 0 Jp

0 0 −Jp 0


(2)

whereM is the mass of the rotor, Jt is the transverse mass moment of inertia about the

c. g., and Jp is the polar mass moment of inertia about the c. g. Equation (1) indicates that

the only external forces acting on the rotor are due to the active magnetic bearings. The

rotor model also appears in [15], although some differences in signs of displacements

occur due to the selection of the coordinate system in this paper.

2.2 Coordinate Transformations

The bearings are acting at positions 1b and 2b in Fig. 1. It is desired in this paper to

keep the analysis using the c. g. coordinate system as the mass and gyroscopic matrices
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are simpler. Thus, it is necessary to transform from the bearing coordinates to the

gravity-center coordinates since the equations of motion are formulated in the gravity-

center coordinate system. The transform from bearing coordinates to gravity-center

coordinates is given by:



x1b

y1b

x2b

y2b

︸ ︷︷ ︸
ub

=



1 0 0 −a

0 1 a 0

1 0 0 b

0 1 −b 0


︸ ︷︷ ︸

Qb



xg

yg

θxg

θyg

︸ ︷︷ ︸
ug

(3)

where x1b , y1b , x2b , and y2b refer to the rotor translations at the bearings, and a and b

are the axial distances from each bearing to the rotor gravity center.

The sensors are in general not collocated with the bearing center of action. To ac-

count for this, an additional transform is required to move from the sensors to the

gravity center coordinate system. The measurement locations are used for design of

the feedback controller described in Section 2.3.2. Analogous to the bearing coordinate

transformation, the sensor coordinate transformation is given by:



x1s

y1s

x2s

y2s

︸ ︷︷ ︸
us

=



1 0 0 −c

0 1 c 0

1 0 0 d

0 1 −d 0


︸ ︷︷ ︸

Qs



xg

yg

θxg

θyg

︸ ︷︷ ︸
ug

(4)

where x1s , y1s , x2s , and y2s are the sensor axial locations, and c and d are the axial

distances from the sensors to the rotor gravity center.
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2.3 AMB Model

As is standard in active magnetic bearing analyses, the magnetic forces are linearized

about the operating point, giving the force for each AMB axis in terms of rotor displace-

ment and perturbation current as:

Fxb ≈ ki ip + khx (5)

Fyb ≈ ki ip + kh y (6)

where ip is the perturbation current, ki represents the current gain and kh represents

the open-loop stiffness.

When the x and y directions are considered for each magnetic bearing in Fig. 1,

matrix equations can be formed for the open loop bearing characteristics in terms of

the bearing coordinates. The resulting force model is:

fb ,AMB = Khub + Kiip (7)

where ub = [ x1b y1b x2b y2b ]
T and ip = [ ip ,x1b ip ,y1b ip ,x2b ip ,x2b ]

T . The resulting

matrix of current gains Ki for the perturbation currents is given by ki I, and the open-loop

stiffness matrix Kh is given by kh I, where I is the identity matrix.

2.3.1 Open-Loop Characteristics

The active magnetic bearings considered only apply forces at the locations indicated in

Fig. 1. The net forces and moments acting at the gravity center of the rotor are then

obtained by a force and moment balance. The forces in moments at the gravity center
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due to the AMBs are expressed in matrix form as:



Fxg

Fyg

Mxg

Myg

︸ ︷︷ ︸
fg ,AMB

=



1 0 1 0

0 1 0 1

0 a 0 −b

−a 0 b 0


︸ ︷︷ ︸

QT
b



Fx1b

Fy1b

Fx2b

Fy2b

︸ ︷︷ ︸
fb ,AMB

(8)

The coordinate transformation represented by Eq. (8) indicates that the tilt and translate

modes are coupled by the magnetic bearing open loop characteristics for rigid rotor

applications. It should be noted that the force transformation matrix is the transpose

of the coordinate transformation matrix described in Eq. (3). Using the transformation

defined by Eq. (8), the rotor model described by Eq. (1) becomes:

Müg + ΩGu̇g = QTb fb ,AMB (9)

Then by substitution of Eqs. (3, 7) into Eq. (9), the resulting AMB open loop equation of

motion is then:

Müg + ΩGu̇g −QTbKhQbug = QTbKiip (10)

Equation (10) represents an unstable system [15]. The negative feedback controller de-

scribed in Section 2.3.2 is used to stabilize the system and eliminate the coupling of the

tilting and translating modes imposed on the system by Eq. (8).

2.3.2 PD Control Design

For this study, it is desired to express the equations of motion in terms of the gravity cen-

tered coordinates and the control gains. In terms of the sensor coordinates referred to

the gravity center coordinates, the negative feedback control law for the active magnetic
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bearings is [15]:

ip = −Ki−1Q−Tb KPQ−1s us︸ ︷︷ ︸
ug︸ ︷︷ ︸

Proportional Term

−Ki−1Q−Tb KDQ−1s u̇s︸ ︷︷ ︸
u̇g︸ ︷︷ ︸

Derivative Term

−Ki−1KhQb Q−1s us︸ ︷︷ ︸
ug︸ ︷︷ ︸

Compensator Term

(11)

where KP is the proportional control gain matrix and KD is the derivative control gain

matrix. The control law is a modal PD controller with a compensation term for the

open-loop stiffness characteristics of the AMBs. It may be noted that there is no x − y

coordinate coupling in the controller to account for gyroscopic forces.

Substituting Eq. (11) into Eq. (10), the closed-loop AMB-rotor system of equations

becomes:

Müg + ΩGu̇g −QTbKhQbug =

−QT
b
Ki
[
Ki−1Q−Tb KPQ

−1
s
us + Ki−1Q−Tb KDQ

−1
s
u̇s + Ki−1KhQbQ−1s us

]
(12)

Then the equations of motion including the controller in terms of the center of gravity

coordinates reduce to [15]:

Müg + (ΩG + KD)u̇g + KPug = 0 (13)

Implicit in Eq. (13) are the perturbation currents and the current gain that are typical

in linearized AMB control. The diagonal derivative control matrix KD and the diagonal

proportional matrix KP are defined as:

KD =



kd ,t 0 0 0

0 kd ,t 0 0

0 0 kd ,r 0

0 0 0 kd ,r


;KP =



kp ,t 0 0 0

0 kp ,t 0 0

0 0 kp ,r 0

0 0 0 kp ,r


(14)
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where kd ,t and kd ,r represent derivative gains for translational and rotational degrees

of freedom, respectively. The variables kp ,t and kp ,r represent proportional gains for

translational and rotational degrees of freedom. In this formulation, the derivative gain

control matrix acts as damping, and the proportional gain control matrix acts as stiff-

ness. The advantage to expressing the control law as Eq. (13) is that the benefits of

multiple-input multiple-output (MIMO) control are obtained in a form that is similar to

single-input single-output (SISO) control. This allows for a more intuitive “feel” for the

control action on the rotor [15], and makes the model more accessible for mechanical

engineers that do not work with control theory on a regular basis.

Since only rigid-body modes are considered, the damping level represented by kd ,t

can be chosen to be any positive number without affecting the system stability [15].

This paper considers kd ,t values that result in a damping ratio of less than 1, which is

typical for PD controls when rise time and settling time are design considerations. The

proportional gain kp ,t is generally chosen such that the ratio of closed loop stiffness to

open loop stiffness kp ,t/kh is between 1 to 3 [15].

Sensor non-collocation is not much on an issue for rigid rotors. A well-behaved coor-

dinate transformation can always be found for relating the sensor signals to the bearing

locations. Thus this topic is not discussed further.

2.4 Translating Mode Damped Eigenvalues

Another advantage to Eq. (13) is that the translating modes are now decoupled from the

tilt modes. The translating modes are described by the uncoupled translational degrees

of freedom, or:

 M 0

0 M


 ẍg

ÿg

 +
 kd ,t 0

0 kd ,t


 ẋg

ẏg

 +
 kp ,t 0

0 kp ,t


 xg

yg

 =
 0

0

 (15)
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The damped eigenvalues of the translating modes are not a function of the running

speed due to the decoupling. Taking the horizontal translation as an example, the equa-

tion of motion is:

Mẍg + kd ,t ẋg + kp ,txg = 0 (16)

Equation (16) can be placed in standard form as:

ẍg + 2ζtωn ,t ẋg + ω
2

n ,t
xg = 0 (17)

where ζt represents the translate modal damping ratio. The undamped translational

natural frequency ωn ,t is used to non-dimensionalize the damped natural frequency.

Assuming that the transverse damping ratio ζt is less than one, the complex solution for

the dimensionless damped natural frequency s̄t is:

s̄t = −ζt ± j
√
1− ζ2

t
(18)

The vertical translation solution is identical. This is the dimensionless translating eigen-

value solution.

2.5 Tilting Mode Damped Eigenvalues

The tilt modes are represented by the rotational degrees of freedom about the trans-

verse axes, and the equations of motion are:

 Jt 0

0 Jt


 θ̈xg

θ̈yg

 +
Ω

 0 Jp

−Jp 0

 +
 kd ,r 0

0 kd ,r



 θ̇xg

θ̇yg


+

 kp ,r 0

0 kp ,r


 θxg

θyg

 =
 0

0

 (19)
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It should be noted that this system represents an extension of the undamped rigid

rotor analysis found in many textbooks [17–19]. The effect of gyroscopics and the PD

control action are now considered for the natural frequencies corresponding to the tilt

modes. A solution of the form θx = Θxe
st , θy = Θye

st is assumed for the analysis.

Equation (19) then becomes:

 s 2Jt + skd ,r + kp ,r sΩJp

−sΩJp s 2Jt + skd ,r + kp ,r


 Θxg

Θyg

 =
 0

0

 (20)

The system damped eigenvalues are then found by setting the determinant of the impedance

matrix equal to zero, or:

∣∣∣∣∣∣∣
s 2Jt + skd ,r + kp ,r sΩJp

−sΩJp s 2Jt + skd ,r + kp ,r

∣∣∣∣∣∣∣ = 0 (21)

The resulting characteristic equation for the tilt modes is then:

(
s
2
Jt + skd ,r + kp ,r

)2
+ s

2
(ΩJp )

2
= 0 (22)

Equation (22) can then be factored into two characteristic equations that have four

total roots. These four roots correspond to four tilt modes, two forward and two back-

ward. The two characteristic equations are then:

s
2
Jt + s (kd ,r + jΩJp ) + kp ,r = 0 (23)

s
2
Jt + s (kd ,r − jΩJp ) + kp ,r = 0 (24)
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Placing Eqs. (23, 24) in standard form yields:

s
2
+ s (2ζr ,0ωrn ,0 + jΩP ) + ω

2

rn ,0
= 0 (25)

s
2
+ s (2ζr ,0ωrn ,0 − jΩP ) + ω2rn ,0 = 0 (26)

Here we have defined the tilt mode damping ratio ζr ,0 and the tilt mode natural fre-

quency ωrn ,0 to be the values obtained at zero rotational speed. The ratio of polar inertia

to transverse inertia is also defined as P = Jp/Jt . For cylindrical sections, P can assume

values from 0 to 2. A ratio of P = 0 corresponds to an infinitely long cylindrical rotor,

and a ratio of P = 2 corresponds to a thin disk rotor.

Using the zero-rotational speed undamped natural frequency ωrn ,0 to non-dimensionalize

the damped natural frequencies, the characteristic equations take the form:

s̄
2
+ s̄ (2ζr ,0 + j Ω̄P ) + 1 = 0 (27)

s̄
2
+ s̄ (2ζr ,0 − j Ω̄P ) + 1 = 0 (28)

Considering Eq. (27) first, the solutions for s̄r1,r2 using the quadratic formula is:

s̄r1,r2 =
−2ζr ,0 − j Ω̄P ±

√
(2ζr ,0 + j Ω̄P )2 − 4
2

(29)

For this solution, we assume that the controller derivative gain is such that the tilt

modes are underdamped. After some rearrangement, Eq. (29) becomes:

s̄r1,r2 = −
(
ζr ,0 + j

Ω̄P

2

)
± j

√
1− ζ2

r ,0
+

(
Ω̄P

2

)2
− j ζr ,0Ω̄P (30)

Using a solution for the square root of a complex number [20,21], the first two roots
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of the characteristic equation, represented by Eq. (30), become:

s̄r1,r2 = −ζr ,0 ±
√
1

2

√√[
1− ζ2

r ,0
+

(Ω̄P
2

)2]2
+
(
ζr ,0Ω̄P

)2 − 1 + ζ2
r ,0

−
(Ω̄P
2

)2
+ j

−Ω̄P

2
±
√
1

2

√√[
1− ζ2

r ,0
+
(Ω̄P
2

)2]2
+
(
ζr ,0Ω̄P

)2
+ 1− ζ2

r ,0
+

(Ω̄P
2

)2 (31)

Using a similar procedure for Eq. (28), the remaining solutions s̄r3,r4are:

s̄r3,r4 = −ζr ,0 ∓
√
1

2

√√[
1− ζ2

r ,0
+
(Ω̄P
2

)2]2
+
(
ζr ,0Ω̄P

)2 − 1 + ζ2
r ,0

−
(Ω̄P
2

)2
+ j

Ω̄P
2

±
√
1

2

√√[
1− ζ2

r ,0
+
(Ω̄P
2

)2]2
+
(
ζr ,0Ω̄P

)2
+ 1− ζ2

r ,0
+

(Ω̄P
2

)2 (32)

When the damping ratio is zero, Eqs. (31, 32) reduce to

s̄r1,r2 = −j

Ω̄P
2

∓

√(
Ω̄P

2

)2
+ 1

 (33)

s̄r3,r4 = j

Ω̄P
2

±

√(
Ω̄P

2

)2
+ 1

 (34)

which is the purely complex undamped solution presented in several texts on rotordy-

namics, e.g. [17–19].

2.6 Natural Frequencies, Damping Ratios, and Log Decrements

The four damped tilting mode solutions to s̄ are now in the form p + jq . From these

relations, the effective tilt mode damping ratio ζr at a non-dimensional rotational speed

Ω̄ is given by

ζr = −
p

q√
1 +

(
p

q

)2 (35)
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The undamped tilt mode dimensionless natural frequency ω̄n is then

ω̄rn = −
p

ζr
(36)

Rotordynamic analyses often use the logarithmic decrement δ instead of the damp-

ing ratio to assess the stability margin and the amount of damping in the modes. The

logarithmic decrement is directly related to the damping ratio and is given by:

δ = − 2πζr√
1− ζ2

r

(37)

3 Numerical Examples

To demonstrate the analyses above, several examples are provided. A Campbell diagram

is presented for the undamped eigenvalues for various values of P . A Campbell is also

presented for various zero-speed damping ratios assuming P = 2 to show the sensitivity

of the undamped natural frequencies to applied damping and gyroscopics. Several plots

of logarithmic decrement for different zero-speed damping ratios to show the sensitivity

of the stability margin to the gyroscopics.

3.1 Campbell Diagrams

First, the Campbell diagram arising from Eqs. (33, 34) is considered. This results in

four tilt modes, two forward and two backward. Only some of the forward tilt modes

can be excited by unbalance depending on the value of P , as demonstrated in Fig. 2

and depending on the unbalance distribution. However, unmodeled system dynamics,

including both forward and backward modes, can be excited by the AMBs if the modal

frequency is within the controller bandwidth [22]. This is a significant difference from

rotor systems supported on fluid film bearings. It is therefore important to consider all

the modes within the controller bandwidth in the AMB controller design.
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Figure 2: Rigid Rotor Campbell Diagram, Tilt Modes, ζr ,0 = 0
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Figure 3: Undamped natural frequencies, various damping ratios, P = 0.5

The next Campbell diagram is based on the undamped natural frequency, Eq. (36),

for typical zero-speed damping ratios and a P value of 0.5. In Fig. 3, it is seen that

the undamped tilt natural frequencies are not very sensitive to the zero-speed damping

ratio. The change in natural frequency from ζr ,0 = 0 to ζr ,0 = 0.7 is less than ten percent

for all four modes.

3.2 Effects of Rotational Speed on Stability Margin

The rotor/AMB system does not explicitly have a component designed to control gyro-

scopics. However, the rotor/AMB system is stable. This section discusses the reduction

in stability due to gyroscopic effects. The following discussion of system stability, based

upon Eqs. (31, 32), has not been published previously.

The first stability margin plot of logarithmic decrement versus dimensionless rota-
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Figure 4: Log Decrement as a Function of Dimensionless Running Speed, ζr ,0 = 0.7

tional speed is shown in Fig. 4. For this plot, the damping ratio ζr ,0 was set to 0.7. It

is apparent that the effective damping is a strong function of the gyroscopics and the

rotational speed. For a thin disk (P = 2) rotating at twice the tilt natural frequency, the

logarithmic decrement is 1.99, which compares to a logarithmic decrement of 6.16 for

zero rotational speed, or a reduction by a factor of 3. As P approaches zero the effect on

logarithmic decrement is less pronounced. For a typical value of P = 0.5 for rigid rotor

applications, and rotation at twice the tilt natural frequency, the logarithmic decrement

is 4.64. This is a 25 percent reduction compared to the zero-speed logarithmic decre-

ment.

The second stability margin plot, Fig. 5, shows similar results for a damping ratio of

ζr ,0 = 0.5. Again considering the case of a thin disk where P = 2, the logarithmic decre-

ment is 1.41 when the disk is rotating at twice the tilt natural frequency, compared to a
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Figure 5: Log Decrement as a Function of Dimensionless Running Speed, ζr ,0 = 0.5

logarithmic decrement of 3.62 at zero rotational speed. The relative drop in logarithmic

decrement is less than the ζr ,0 = 0.7 case, since it only was reduced by a factor of 2.57.

With reduced P , the effect on logarithmic decrement is again reduced. For P = 0.5,

the logarithmic decrement for rotation at twice the tilt mode natural frequency is 3.05,

which is a reduction of 16 percent compared to the zero-speed logarithmic decrement.

The third stability margin plot, Fig. 6, shows the results for a damping ratio of ζr ,0 =

0.1. A similar trend is observed when compared to the two previous damping ratios

considered. For the thin disk rotating at twice the tilt natural frequency, the logarithmic

decrement is 0.28, which compares to the zero-speed logarithmic decrement of 0.63.

The stability margin is reduced by a factor of 2.25 in this case. As with the previous

cases, the effect is less pronounced as the inertia ratio P approaches zero. For P = 0.5,

the logarithmic decrement for rotation at twice the tilt critical speed is 0.56, which is a
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Figure 6: Log Decrement as a Function of Dimensionless Running Speed, ζr ,0 = 0.1

12 percent reduction compared to the zero-speed logarithmic decrement.

The fourth stability margin plot, Fig. 7, shows the results for a damping ratio of ζr ,0 =

0.05. The logarithmic decrement at zero rotation is 0.31 for the thin disc. When the thin

disc is rotating at twice the tilt mode critical speed, the logarithmic decrement is reduced

by a factor of 2.21 to 0.14. The effect is most pronounced when the rotor approaches a

thin disc and becomes less prevalent as the rotor approaches a long cylinder, implying

that P is approaching zero. For P = 0.5, the logarithmic decrement for rotation at twice

the tilt mode natural frequency is 0.28, or a reduction of 10 percent compared to the

zero-speed logarithmic decrement.
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Figure 7: Log Decrement as a Function of Dimensionless Running Speed, ζr ,0 = 0.05
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4 Conclusions

In the present work, an analytical dimensionless damped eigenvalue solution was de-

veloped for a rigid rotor supported in AMBs using modal PD control. The tilt mode ana-

lytical solution is completely non-dimensional and is expressed solely in terms of three

dimensionless parameters: dimensionless rotational speed, zero-speed damping ratios,

and the ratio of polar mass moment of inertia to transverse mass moment of inertia.

The translating modes are not affected by the system gyroscopics and yield a typical un-

derdamped eigenvalue solution. The tilt modes are affected by the gyroscopics and the

expressions for the damped eigenvalues become relatively complex functions.

To understand the tilt mode functions in greater detail, Campbell diagrams are pre-

sented. The Campbell diagram of the undamped tilt mode eigenvalues shows the effect

of gyroscopics on the undamped natural frequencies, and the effects of mode splitting.

Based on the mode split, only some of the modes can ever be excited by synchronous

excitations. The number of modes that can be excited by synchronous excitations is a

function of the moment of inertia ratio P and the unbalance distribution. However, all

the forward and backward modes within the controller bandwidth can be excited by the

AMBs [22], making it important to consider them in controller design. Another Campbell

diagram, considering the undamped natural frequency for different damping ratios and

P = 0.5, shows that the undamped natural frequency is relatively insensitive to damping

ratio, with a maximum change of about 5 percent from the undamped case to ζr ,0 = 0.7.

The effect of the gyroscopics on the real part of the eigenvalue, which directly affects

the rotor stability, was also explored. The modal PD controller does not explicitly have

an x − y coupling designed to control the gyroscopic forces. Plots of rotor stability as

a function of non-dimensional running speed show the effect of the gyroscopics on the

stability margin. For non-dimensional running speeds of 2 and P = 2, the effect is a

reduction in logarithmic decrement by a factor of 2.25-3 compared to the zero-speed

24



logarithmic decrement, depending on damping ratio. This effect is a strong function of

the moment of inertia ratio P , and disappears when P = 0 or is near P = 0 for long thin

rotors. It is interesting to note that while the gyroscopic effect is not destabilizing [18],

the gyroscopics can reduce the effective damping of the system. If additional desta-

bilizing mechanisms are present in the system, such as radial seals, then there is the

potential for an unstable rotor that would not be apparent from zero-speed damping

ratios.

Many industrial AMB rotors have a P ratio of 0.5 or less. The change in logarith-

mic decrement was about 25 percent for a damping ration of ζr ,0 = 0.7, and became less

pronounced for lower zero-speed damping ratios. This change in logarithmic decrement

coupled with the relative insensitivity of the rotor natural frequencies to damping indi-

cate that the gyroscopics can then be treated as an uncertainty when modern control

theories such as H∞ or µ-synthesis are applied to the control problem for rigid rotors

supported by AMBs.

The development of a general solution to the rigid rotor supported in active mag-

netic bearings also has the benefit of familiarizing mechanical engineers with the basics

of control algorithms for rotating systems, and gives additional physical insight. The so-

lution also allows for additional study of the effect of other destabilizing mechanisms

that may be present in AMB rigid-rotor systems.

The effects studied here are generally quite different when the rotor is flexible. It is

strongly recommended that model based controllers such as H∞ or µ synthesis be used

for flexible rotors.
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